< Back to the program

Materials

2020-07-02T14:20:00Z


Guided Fine-Tuning for Large-Scale Material Transfer

Valentin Deschaintre, George Drettakis, Adrien Bousseau

We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design workflows that demonstrate the strength of this simple approach. Our first workflow allows to produce plausible SVBRDFs of large-scale objects from only a few pictures. Specifically, users only need take a single picture of a large surface and a few close-up flash pictures of some of its details. We use existing methods to extract SVBRDF parameters from the close-ups, and our method to transfer these parameters to the entire surface, enabling the lightweight capture of surfaces several meters wide such as murals, floors and furniture. In our second workflow, we provide a powerful way for users to create large SVBRDFs from internet pictures by transferring the appearance of existing, pre-designed SVBRDFs. By selecting different exemplars, users can control the materials assigned to the target image, greatly enhancing the creative possibilities offered by deep appearance capture.


Photorealistic Material Editing Through Direct Image Manipulation

Károly Zsolnai-Fehér, Peter Wonka, Michael Wimmer

Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.